



TOWER

# FB SERIES TOWER

#### GENERAL

Octagonal metal towers for supporting Telecommunication antennas.

These towers have the following main features:

- No welding: no weak parts or defects;
- "Panels"-formed modular structure: installation without using special cranes or large trucks;
- Easy transportation: it can fit very limited spaces as the panels can be stacked;
- Assembling: four technicians employed, without cranes, for about 12 hours working.

#### FEATURES OF THE MATERIALS

Nominal yield point "fy" and ultimate tensile strength "fu" for structural steels according to EN 10025 (t ≥ 40 mm):

| Steel | S235 | $f_y = 235  MPa$           | $f_u = 360 MPa$         |
|-------|------|----------------------------|-------------------------|
|       | S275 | f <sub>y</sub> = 275 MPa   | $f_u = 430 \text{ MPa}$ |
|       | S355 | $f_{\rm v} = 355  \rm MPa$ | $f_u = 510  \text{MPa}$ |

Nominal yield point "fyb" and ultimate tensile strength "fub" for bolts:

Bolts class 8.8  $f_{yb} = 640 MPa$  $f_{ub} = 800 MPa$ 

Nuts class 6 S

Coefficients calculated for the material:

- modulus of elasticity  $E = 210000 \text{ N/mm}^2$ 

- modulus of tangential elasticity  $G = E / (2_(1+n)) @ 81000 N/mm^2$ 

- poisson coefficient n = 0.3

a = 12 10-6 per °C - coefficient of thermal expansion  $r = 7850 \text{ kg/m}^3$ - density

Maximum stress is obtained by a linear elastic analysis of the structure, according to the construction theory method; safety is verified by using the ultimate limit state method.

### DIMENSIONS

The tower can be from 15 to 36 mt tall and is comprised of eight 2.900 mm modules. The tower octagonal cross section is generated by the combination of 8 shaped plates, 6 and 8 mm thick, bolted together. The tower is fixed to the base through a plate and anchor bolts embedded into a reinforced concrete foundation. When the tests are performed, the loads on the structure are combined to give the most unfavorable state of stress for each module.

#### STANDARD HEIGHT MODELS

| NAME | HEIGHT |
|------|--------|
| FB15 | 15 m   |
| FB18 | 18 m   |
| FB20 | 20 m   |
| FB24 | 24 m   |
| FB26 | 26 m   |
| FB30 | 30 m   |
| FB36 | 36 m   |

### WIND ON THE TOWER

The horizontal action of the wind is considered with the reference kinetic pressure, which is equal to (see wind load analysis § 6.1.) q<sub>vref</sub> = 455.6 N/m<sup>2</sup>.

## WIND LOAD ANALYSIS

 $v_{ref} = 27.0 \text{ m/s}$ Reference speed: Reference kinetic pressure:  $q_{ref} = 455.6 \text{ N/m}^2$ 

 $z_0 = 0.05 m$ ;  $z_{min} = 4 m$ Ground roughness category:  $k_r = 0.19$ ;

Topography coefficient:  $c_t = 1.0$  (flat ground)

Shape coefficient for towers:  $c_p = 1.2$ Dynamic coefficient:  $c_{d}^{r} = 1.0$ Curve p lotting:  $z = q_{ref} \times c_e$ 

















SMITT TECHNOLOGY SRL STRUCTURES FOR TELECOMMUNICATION

VIA MARTIRI DELLA LIBERTÁ, 5 I - 25030 RONCADELLE (BS) ITALY TEL.: +39.030.2586164 - +39.030.2586092 FAX: +39.030.2586167

E-MAIL: INFO@SMITT.IT WWW.SMITT.IT